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Joint diagonalization applied to the detection and discrimination
of unexploded ordnance

Fridon Shubitidze1, Juan Pablo Fernández2, Irma Shamatava1, Benjamin E. Barrowes3, and
Kevin O’Neill3

ABSTRACT

Efforts to discriminate buried unexploded ordnance from
harmless surrounding clutter are often hampered by the uncer-
tainty in the number of buried targets that produce a given
detected signal. We present a technique that helps determine
that number with no need for data inversion. The procedure
is based on the joint diagonalization of a set of multistatic re-
sponse (MSR) matrices measured at different time gates by a
time-domain electromagnetic induction sensor. In particular,
we consider the Naval Research Laboratory’s Time-Domain
Electromagnetic Multisensor Towed Array Detection System
(TEMTADS), which consists of a 5 × 5 square grid of con-
centric transmitter/receiver pairs. The diagonalization process
itself generalizes one of the standard procedures for extracting

the eigenvalues of a single matrix; in terms of execution time, it
is comparable to diagonalizing the matrices one by one. We pre-
sent the method, discuss and illustrate its mathematical basis
and physical meaning, and apply it to several actual measure-
ments carried out with TEMTADS at a test stand and in the field
at the former Camp Butner in North Carolina. We find that each
target in a measurement is associated with a set of nonzero time-
dependent MSR eigenvalues (usually three), which enables es-
timation of the number of targets interrogated. These eigenva-
lues have a characteristic shape as a function of time that
does not change with the location and orientation of the target
relative to the sensor. We justify analytically and empirically
that symmetric targets have pairs of eigenvalues with constant
ratios between them.

INTRODUCTION

The United States military has identified as one of its main en-
vironmental challenges reducing the worldwide profusion of unex-
ploded ordnance (UXO) contaminating former military training
grounds and battle-scarred territory. UXO kill or maim more people
in conflict zones each year than do landmines (Moyes et al., 2002);
they also cause frequent disruption in nations at peace. Remediation
of UXO-tainted land is laborious and expensive: targets of interest
are usually surrounded by metallic clutter, natural and artificial, that
is also detected by sensors, and in some areas, the targets them-
selves are also densely clustered. Thus, it is often not clear how
many buried targets contribute to a given detected signal, or how

many are dangerous, and this shortage of information complicates
identification attempts. This paper aims to ease UXO remediation
by presenting a method to estimate the number of targets and thus
assess scene complexity quickly and reliably on the basis of elec-
tromagnetic induction (EMI) data.
In EMI sensing, a time-dependent primary magnetic field estab-

lished by a sensor induces eddy currents and/or magnetic domain
realignments in nearby ferrous and nonferrous metallic objects.
This response, in turn, gives rise to a measurable secondary mag-
netic field. The measured signal, often referred to as an “anomaly”
detected at a “cell,” depends on the sizes, shapes, and material
properties of the targets under interrogation and also on the parti-
culars of the measurement, i.e., the relative distances and attitudes
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between the targets and the sensor. The main task of the data ana-
lysis is to separate these “intrinsic” and “extrinsic” factors to deter-
mine what targets are producing the anomaly and where and how
deep they are within the cell. This inverse problem is usually solved
using a combination of linear and nonlinear least squares to fit a
model to the measurements (Aster et al., 2005; Everett, 2012).
Several models used with success to detect and characterize bur-

ied metal targets build on the premise that the currents and domains
that generate electromagnetic response are not distributed uniformly
within each target, but instead, tend to concentrate around certain
singular points or regions. The techniques synthesize that response
as though it consisted of a set of analytic solutions of the Maxwell
equations due to point sources located at those so-called “scattered
field singularities” (Bogdanov et al., 1999; Karkashadze et al.,
2009). The time-dependent behavior of these sources is used to
characterize and classify the causative targets. (In this work, we
use “source” to refer to these elementary analytic solutions, and
not, as is often the case in geophysics, to transmitters.)
The number of scattered field singularities depends on the wave-

length and on the scatterers’ geometry and material properties. In
the EMI frequency regime, where the wavelengths are significantly
larger than the targets’ characteristic lengths, most homogeneous
compact targets have a dominant singularity at their centers. There-
fore, the simplest and most widely used approach replaces each tar-
get with a single point magnetic dipole located near its geometric
center (Das et al., 1990; Barrow and Nelson, 2001; Bell et al., 2001;
Pasion and Oldenburg, 2001; Zhang et al., 2003; Smith and Mor-
rison, 2004; Tarokh et al., 2004; Fernández et al., 2011). This point
dipole model tends to work best for relatively small and distant tar-
gets, and in terms of predictive accuracy and consistency has been
superseded by generalizations that distribute dipole-moment densi-
ties over surfaces or volumes (Shubitidze et al., 2010b, 2010c). On
the other hand, all of these models fare less well when analyzing
anomalies due to more than one target: The inversion becomes more
computationally expensive, has more local minima, and may re-
quire regularization (Song et al., 2009, 2011; Grzegorczyk et al.,
2011). When the number of targets is not known a priori, as in
all real-world tests, the situation is complicated further because
the models must be run several times (assuming different target
numbers) and have the tendency to overfit the data.
The approach we introduce here is designed to make a fast es-

timate of the number of targets in a cell. It is not meant to replace
actual inversion because it does not yield location information and
does not characterize targets with complete precision, but rather
constitutes an initial pre-inversion step. (The inversion routines that
use as input the resulting number estimates are presented elsewhere
(Shubitidze et al., 2010a, 2010b) and will be studied in detail
in a companion paper.)
The technique is based on the joint diagonalization (JD) of a se-

quence of square time-dependent multistatic response (MSR) ma-
trices that are synthesized directly from measured EMI signals
without invoking a forward model. The number of nonzero time-
dependent eigenvalues of the set of matrices is related to the number
of meaningful elementary sources present in the illuminated cell. As
will be shown in the “Methods” section, a single source generating
three eigenvalues may suffice to describe a small or deeply buried
target. A complex field structure, caused by a large, heterogeneous,
or very shallow target, may require more than one elementary
source (and thus more than three time-dependent eigenvalues) to

describe the resulting field adequately. Objects like thin wires or
rings that are “small” along one or more dimensions may require
less than three time-dependent eigenvalues.
Joint diagonalization has become an important tool for signal

processing and inverse problems, including independent component
analysis (Comon, 1994), blind source separation (BSS) (Belouchra-
ni et al., 1997), common principal component analysis, and kernel-
based nonlinear BSS (Harmeling et al., 2003). To the best of our
knowledge, this is the first use of this technique for UXO discrimi-
nation.

METHODS

The TEMTADS sensor array

EMI sensors operate at very low frequencies (a few Hz to a few
hundred kHz) to penetrate conductive ground, resulting in data with
poor spatial resolution. Advanced EMI sensors have been designed
to overcome this limitation: They enhance the information content
of the data by increasing the number of sensor/target attitudes and
reduce positioning uncertainty by employing rigid arrays of trans-
mitters and receivers. One such instrument is the Time-domain
Electromagnetic Multisensor Towed Array Detection System
(TEMTADS), developed by the Naval Research Laboratory and
G&G Sciences, Inc. (Steinhurst et al., 2010), to which we restrict
attention.
Shown in Figure 1, TEMTADS is a time-domain EMI sensor that

consists of 25 transmitter/receiver (Tx/Rx) pairs, each composed of
a 35-cm square transmitter loop surrounding a 25-cm square recei-
ver loop. The Tx/Rx pairs are arrayed as a rectangular 5 × 5 grid
with 40-cm neighbor-to-neighbor separation for a total array dimen-
sion of 2 m. At each location, the sensor activates the transmitter
loops in sequence, and for each transmission all receivers record
signals, providing 625 EMI transients from ∼100 μs to 25 ms over
Ng ¼ 123 time gates.

Multistatic response matrices

To construct the MSR matrices, one assembles the 625 readings
at each time gate into a 25 × 25 array so that each column stands for
one of Nt transmitters and each row represents one of Nr receivers:

SðtkÞ ¼

2
6664

H11 H12 · · · H1Nt

H21 H22 · · · H2Nt

..

. ..
. . .

. ..
.

HNr1
HNr2

· · · HNrNt

3
7775; k ¼ 1; : : : ; Ng;

(1)

where the element Hij is the field measured by the ith receiver in
response to the jth transmitter. Below, we look at the time devel-
opment of the MSR sequence; here, we concentrate on a single time
gate and interpret the information contained in each matrix. It is
shown in this paper that the measured data are resolved as a super-
position of “elemental” spatio-temporal subsignals, each related to
the EMI signature of an elementary magnetic dipole source. As-
sume there are N such sources. We postulate that the field of the
jth transmitter, immediately upon being shut off, induces in the
lth source a dipole moment given by

mjl ¼ UlΛlUT
l B

pr
jl ; (2)
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where Bpr
jl represents the primary magnetic induction and the Euler

rotation matrixUl relates the transmitter array coordinate axes to the
principal axes of the source. The diagonal polarizability matrix Λl,
intrinsic to the source, measures the strength of the moment that the
primary field induces along each of the source axes. This polariz-
ability matrix contains, in principle, all the time-dependent informa-
tion in the measured secondary signal.
To compute the primary magnetic induction Bpr

jl , recall that the
TEMTADS transmitter assembly consists of coplanar square loops
forming a regular grid. The Biot-Savart law prescribes the primary
magnetic induction at location rl of the lth source when the jth
transmitter antenna (of area σTxj ) is excited by a current Ij:

Bpr
jl ¼

μ0Ij
4π

σTxj
1

σTxj

I
Txj

dl 0 × ðrl − r 0Þ
jrl − r 0j3 ¼ gprjlσTxj Ij; (3)

where μ0 is the permeability of free space, dl 0 is the usual Biot-
Savart line element, and we have introduced the normalized Green
function gprjl .
According to Faraday’s law, the signal measured by a receiver

coil is the negative time derivative of the magnetic flux passing
through it. (Long enough after transmitter shut-off, this flux is
purely secondary.) The field at r of a dipole of moment m at rl is

B ¼ μ0
4π

∇ ×
�
m ×

r − rl
jr − rlj3

�
; and thus

Z
B · ds ¼ −m ·

μ0
4π

I
dl ×

r − rl
jr − rlj3

(4)

by straightforward application of Stokes’s theorem. Thus, the signal
sampled at time tk by the ith receiver (of area σRxi ) when the ith
source is excited by the jth transmitter is

Hl
ijðtkÞσRxiσTxj Ij ¼

μ0
4π

σRxi
1

σRxi

I
Rxi

dl 0 × ðr 0 − rlÞ
jr 0 − rlj3

· ṁjlðtkÞ

¼ gscli σRxi · ṁjlðtkÞ
¼ gscli σRxi · ½UΛ̇lðtkÞUT � · gprjlσTxj Ij; (5)

where a dot over a variable indicates its time derivative. We have
also introduced the normalized Green function gscli in analogy with
gprjl ; the two are seen to have the same form. In equations 4 and 5, the
line element dl 0 lies on the x-y plane, and, as a consequence, the
Green functions are similar in structure to those of the simple model
presented in Appendix A (in which vertical dipoles establish the
primary field and only the z-component of the secondary field is
measured). Note that, in the definition of the received signal, we
have included the exciting current Ij and the transmitter and recei-
ver areas; these quantities are known and can be factored out.
At a given time gate, and with only the lth source present, we

construct the MSR matrix for the complete transmitter/receiver ar-
ray by tiling all the Nr × Nt available samples of expression 5:

S ¼ GscUlΛ̇lUT
l ðGprÞT ¼ ðGscUlÞΛ̇lðGprUlÞT; (6)

where the primary (or transmitter) dyad Gpr is of size Nt × 3, the
secondary (or receiver) dyad Gsc is of size Nr × 3, and the response
matrix UlΛ̇UT

l is 3 × 3. The matrix S has size Nr × Nt and is square

if Nr ¼ Nt, as with TEMTADS. Moreover, the condition
Gsc

l ¼ Gpr
l ≡Gl holds approximately even though the receivers

do not coincide exactly with the transmitters. This means that
the matrix can be diagonalized to yield real eigenvalues and
eigenvectors. (This diagonalization is more precisely a singular va-
lue decomposition (SVD) for each time gate, and we use “diago-
nalization” as shorthand for “SVD of a symmetric matrix” in
what follows.) BecauseUlΛ̇lUT

l is 3 × 3, the matrix S has only three
nonzero eigenvalues for a single source; this property is the basis of
the method. When there is more than one source present, the de-
composition 6 expands to

S¼ ½Gsc
1 Gsc

2 · · · �

2
64
U1Λ̇1UT

1 0 · · ·
0 U2Λ̇2UT

2 · · ·

..

. ..
. . .

.

3
75
2
64
ðGpr

1 ÞT
ðGpr

2 ÞT
..
.

3
75

¼ ½Gsc
1 U1 Gsc

2 U2 · · · �

2
64
Λ̇1 0 · · ·
0 Λ̇2 · · ·
..
. ..

. . .
.

3
75
2
64
ðGpr

1 U1ÞT
ðGpr

2 U2ÞT
..
.

3
75;

(7)

where again Gsc
l ¼ Gpr

l ≡Gl. Formally, the intrinsic middle matrix
in equation 7 has size 3N × 3N, where N is the number of sources;
numerically, it is a 3N × 3N block-diagonal matrix padded with
zeros to reach a size of Nr × Nt and thus with only 3N nonzero

Figure 1. Photograph (a) and sketch (b) of the TEMTADS sensor
array.
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eigenvalues. The method should be able to resolve up to bNr∕3c
responding dipole sources, or eight for TEMTADS.
This procedure would be equivalent to full inversion (though

without the positional information) if one could extract directly
the derivative Λ̇ of the polarizability matrix. This is not possible,
however, because the Green dyads are not orthogonal. The actual
quantities obtained from the diagonalization can be found by repla-
cing the Green dyads by their SVDs:

S ¼ GUΛ̇UTGT ¼ W½ΣVTUΛ̇UTVΣ�WT

¼ WZΔZTWT ¼ YΔYT: (8)

(The matrix within brackets in the second step is real and symmetric
and thus has a purely real eigendecomposition.) Equation 8 shows
that the eigenvalues stored in matrix Δ are not solely composed of
source responses, but also contain location and orientation informa-
tion from the Green dyads. The crucial point is that the eigenvalues
contain all of the time dependence of the signal, a property that we
now exploit.

Time development of the MSR eigenvalues

The second step of the procedure consists of incorporating the
time dependence of the MSR matrices in the eigenvalue analysis
from the previous section. As we shall see below, this information
is more useful if each eigenvalue can be tracked separately as the
signal decays and associated with the same time-independent eigen-
vector. Thus, it is necessary to diagonalize the Ng ¼ 123 matrices
simultaneously such that they share the same set of orthonormal
time-independent eigenvectors, and these appear in the same order
at all times. Denoting again as SðtkÞ the MSR matrix at the kth time
gate, a unitary matrix V is sought such that the products

Dk ¼ VTSðtkÞV (9)

are “as diagonal as possible” in the sense of definition B-1 in Ap-
pendix B. From now on, we concentrate on these time-decaying
diagonal elements, referring to them as “eigenvalues” even though

eigenvalues are in rigor scalars, not curves, and describing them as
“parallel” or “crossing each other” in a way that the figures will
make clear.
One could in principle diagonalize the MSR matrix at each time

gate, and the eigenvectors, which depend only on geometry, should
stay constant. The fact that we cannot know a priori the order in
which the eigenvalues and their corresponding eigenvectors result
from each single-gate diagonalization would be only a minor com-
plication if the data had no noise. Instead, we look for an orthogonal
matrix of eigenvectors that diagonalizes all the MSR matrices si-
multaneously. Two different procedures, described in Appendix B,
were employed with identical results. The most efficient one
(Flury and Gautschi, 1986; Cardoso and Souloumiac, 1996; Belou-
chrani et al., 1997) is a well-known generalization of the Jacobi
method for diagonalizing single matrices. We note that further de-
velopment of our procedure, generalized for nonsymmetric and
nonsquare MSR matrices, may require the use of a joint SVD algo-
rithm, with two sets of shared vectors instead of one (Maehara and
Murota, 2011).

RESULTS

Test-stand measurements

The main purpose of the JD technique is to estimate the number
of targets producing a given measured signal. In this section, we
first describe an idealized experiment that was designed to act as
a benchmark for multitarget scenarios while avoiding some of
the complications that arise in the field. The experiment was carried
out by personnel from Nova Research, Inc. on 15 January 2010. The
setup is depicted in Figure 2. The TEMTADS sensor array was
placed on an elevated platform. Underneath, several targets were
added in sequence to form an increasingly complex scene, with
the instrument measuring the response of every configuration.
The targets of interest (TOI) were two common UXO, a 105-mm

M60 howitzer shell and a 60-mm mortar round. Each lay on its side
with nose pointing in the þx̂ direction: the 105-mm was at a depth
of 63 cm below the center of the sensor, while the 60-mmwas 38 cm
below the instrument and displaced 40 cm in the −ŷ-direction from
the sensor center. A sphere and a spheroid were successively placed
27.5 cm below TEMTADS to simulate shallow clutter with the
potential to obscure the targets of interest. The sphere, placed at
10ðx̂þ ŷÞ cm from the origin, was made of aluminum and was
10 cm in diameter; the spheroid, made of steel with major and minor
axes 20 and 4 cm, respectively, was at −ð30x̂þ 40ŷÞ cm from the
center.
Initially, the targets were interrogated individually. Figure 3a

shows the complete set of 25 eigenvalues obtained for the 105-mm
shell, Figure 3b shows the same result for the 60-mm round, and
Figure 4 displays the decay curves for the sphere and spheroid
added in the course of the experiment. In all cases, at least three
time-dependent eigenvalues emerge from the background noise.
(Eigenvalues that could be associated with high-order sources such
as quadrupoles are indistinguishable from the noise.) Two eigenva-
lues look parallel to one another (i.e., there is a constant
ratio between the two); for the sphere of Figure 4a two coincide
and the third is parallel. This parallelism is indicative of cylindrical
symmetry, as we justify in Appendix A using a simplified model.
The 60-mm round has eigenvalues of comparable size to those of
the 105-mm shell, even though the target is much smaller. This is
due to the fact that the eigenvalues do not store only intrinsic

Figure 2. A test-stand experiment featuring an increasing number
of targets under interrogation by TEMTADS. As in Figure 1, the
system is observed essentially head-on from the þŷ-direction.
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responses but also positional information. It can also be noted that
the 105-mm shell has at least one more above-noise eigenvalue,
showing that it is not as accurately represented by a single source
as the 60-mm round.
The fact that the eigenvalues change with location points out the

necessity of diagonalizing the sequence of MSR matrices simulta-
neously. Consider the 60-mm round of Figure 3b. TEMTADS mea-
surements were carried out on the same target at a different set of
locations: Under the sensor at a depth of 35 cm (3 cm shallower than
in Figure 3b), −10ðx̂þ ŷÞ cm from the center and 29.5 cm below
the sensor, and at the latter depth but under the center. Figure 5
shows the eigenvalue decay curves that result from carrying out
joint diagonalization on these three data sets, whereas Figure 6
shows the same decay curves computed time gate by time gate using
the SVD. Both methods find three above-threshold eigenvalues and
correctly predict that there is only one target, but the eigenvalues’
time developments have a crucial difference: The JD eigenvalues
preserve their shapes case to case, even as the relative amplitudes
vary, whereas those obtained with the SVD change shape as the

object location varies. The simple sorting provided by the SVD ex-
plicitly disallows the eigenvalue crossings that help preserve their
shapes and the parallelism that reveals possible symmetry; a more
systematic procedure based on eigenvector comparison (as opposed
to eigenvalue comparison) works well for one-target scenarios, but
breaks down in multitarget cases where there are many more decay
curves crossing each other. Again, the number of sources would be
estimated correctly, but potentially important information given by
the decay shape would be lost.
Figure 7a shows the eigenvalue decay curves for the configura-

tion consisting of the two TOI at the locations from Figure 3. There
are seven above-noise eigenvalue curves, indicating that there are at
least two targets in the data. The two sets of crossing decay curves
from Figure 3 are visible now as a weighted nonlinear superposition
of the individual responses, including the fourth eigenvalue asso-
ciated with the larger shell. Figure 7b and 7c shows the MSR ei-
genvalues obtained after sequentially adding the first and second
clutter items. Ten eigenvalue curves are above the noise in Figure 7b,
revealing the presence of three targets, and 12 curves appear in

Figure 3. (a) Eigenvalues of the TEMTADS multistatic response
matrix for a 105-mm M60 howitzer shell (shown in the inset).
(b) Eigenvalues of the TEMTADS multistatic response matrix
for a 60-mm M49 mortar round (shown in the inset).

Figure 4. Measured (TEMTADS multistatic response) eigen-
values for an aluminum sphere of diameter 10 cm (a) and a
steel prolate spheroid (b) of minor and major axes 4 and 20 cm,
respectively.
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Figure 7c, showing that the number has increased. The eigenvalue
signatures of the original targets can still be discerned, but they are
mixed with contributions from clutter items. A scenario with more
than six nonzero eigenvalues potentially indicates the presence of a
single large shallow target or of several smaller ones and will be
routinely dug out when encountered in the field.

Camp Butner blind test

As part of its effort to make UXO remediation faster and more
economical, the Environmental Strategic Technology Certification
Program (ESTCP) is in the process of administering a series of blind
classification tests of increasing realism to measure the progress

Figure 6. Eigenvalues for the 60-mm round computed using the
SVD at each time gate for three different object locations.

Figure 5. Eigenvalues for the 60-mm round computed using joint
diagonalization for three different object locations.
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made in the development of sensors and inversion and classification
algorithms. The first test (Shubitidze et al., 2010c; Fernández et al.,
2010), held in 2007 at the former Camp Sibert in Alabama, was
relatively straightforward: It was required to discriminate between
large, intact 4.2} mortar rounds and smaller explosion byproducts
and assorted debris. The data were taken by two first-generation
sensors, the EM-61 and EM-63, both developed by Geonics,
Inc. There were 150 cells plus 66 for calibration, each one well
separated from the others and containing only one target.
The second test (Shamatava et al., 2010; Shubitidze et al., 2010a)

was held in 2009 near San Luis Obispo in California. This new test
better reflected the wide range of dangerous targets usually present
in the field: there were samples of 60-mm mortars, 2.36} rockets
(whole and fragments), 81-mm projectiles, and 4.2} mortars; three
additional munition types were discovered during the course of the
demonstration. Each cell contained an unspecified number of dan-
gerous and/or innocuous targets. The participants were expected not
only to identify the UXO, but also to classify them by caliber. The
test, moreover, featured a more demanding topography. Magnet-
ometers and commercially available first-generation sensors were
used to detect and flag anomalies that were then interrogated more
closely by state-of-the art EMI instruments (TEMTADS, the Ber-
keley UXO Discriminator, and the Geometrics MetalMapper).
The test was at a much larger scale, comprising over 1000 data sets
for each instrument.
The third test (SERDP, 2010), on which we concentrate here,

took place at the former Camp Butner in North Carolina. Camp But-
ner functioned as a training ground for infantry divisions and artil-
lery and engineering units during World War II. A large variety of
munitions were reportedly used there; at the test site, the targets of
interest consisted mostly of 37-mm projectiles (with and without a
copper driving band) and 105-mm howitzer shells and HEAT
rounds. The clutter items were typical explosion byproducts, such
as partial shells and fuzes, along with smaller shrapnel and nonord-
nance metallic debris. Many of the fragments were similar in size
and wall thickness to the 37-mm projectiles (Andrews et al., 2011).
The test started with an exploratory cart-based survey using the
Geonics EM-61 sensor. The cells in which the EM-61 data indicated
the presence of an anomaly (with one or more metallic targets) were
then subjected to cued examination with TEMTADS. A total of
2291 cells were interrogated, of which 171 corresponded to poten-
tially hazardous targets. The discrimination results obtained by our
group are published elsewhere (Cazares et al., 2011). Here, we de-
monstrate only our usage of JD to estimate numbers of targets and
illustrate shape differences.
Figure 8 shows typical examples of the two kinds of 105-mm

projectiles found at the site, along with the time-dependent MSR
eigenvalues extracted from the cells that contained them. There
are three above-noise eigenvalues in each case, revealing the pre-
sence of one target. The howitzer shell of Figure 8a (the large TOI in
the test-stand experiment described above) is buried 55 cm below
ground, whereas the HEAT round in Figure 8b is 62 cm deep. The
signal from the latter is weaker because of the greater depth, despite
the lower noise level (which, in the case of Camp Butner, varied
substantially from cell to cell). The slow decay of the eigenvalues
indicates that these are large targets with substantial metal content
(Shubitidze et al., 2010b). Two of the eigenvalues are again seen to
be roughly parallel, and in the case of the shell, they overlap each
other. The behavior of the other (nonparallel) above-threshold

eigenvalue allows preliminary classification of the target. Figure 8c
shows the eigenvalue decay curves (computed using both JD and
constrained nonlinear optimization, as discussed in Appendix B)
for the HEAT round as measured by TEMTADS in the APG test

Figure 7. MSR eigenvalues of the test-stand measurements as the
munitions of Figure 3 are placed together (a) and then joined by the
sphere (b) and by the sphere and spheroid (c) of Figure 4.
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stand of the previous section; the munition was 53 cm below the
sensor center in that case. The time decay in Figure 8b resembles
this measurement more than it does the other cell.
Typical instances of the other Camp Butner TOI, the two different

kinds of 37-mm projectiles, are shown along with their time-depen-
dent eigenvalues in Figure 9. The signal in Figure 9a is strong and
distinct, reflecting the shallowness of the target (it is only 8 cm
deep). The copper driving band, with its high conductivity, influ-
ences the signal by retarding its decay. The signal in Figure 9b
is much weaker, as the target is at a larger depth, but it has three
time-dependent eigenvalues that are distinct from the noise, whose
level is similar to that of Figure 9a, through the whole decay.
Figure 10a depicts the result of running JD on a cell that con-

tained a fuze and a small detonation fragment, both located
16 cm below the surface, whereas Figure 10b does the same for
a single fuze buried almost twice as deep at 28 cm. In both cases,
only three eigenvalue decay curves are above the noise threshold,
indicating that the targets in each cell can be represented by a single
source. The JD analysis in Figure 10a case fails to identify the small

Figure 9. (a) MSR eigenvalues for Camp Butner Cell 124, with one
kind of 37-mm projectile at 8 cm below ground. (b) MSR eigen-
values for Camp Butner Cell 192, which contained the other kind
of 37-mm projectile, this one at a depth of 20 cm.

Figure 8. (a) MSR eigenvalues for Camp Butner Cell 42, which
contained a 105-mm HE shell buried at a depth of 55 cm.
(b) MSR eigenvalues for Camp Butner Cell 62, containing a
105-mm HEAT round buried at 62 cm. (c) MSR eigenvalues for
a 105-mm HEAT round placed 53 cm below TEMTADS in the test
stand, computed using JD (solid lines) and nonlinear constrained
optimization (dots).
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fragment, which was located close to the fuze. In Figure 10b, there
are still three dominant eigenvalues, but the low signal-to-noise
ratio makes them barely discernible. The shape information given
by JD was crucial in helping to identify this target correctly. Here, as
in all real-world situations, the noise is due simultaneously to the
ground, which can be magnetically responsive or wet (or both), to
the sensor, and to objects too small or distant to produce detectable
individual signals but whose collective response may be significant.
Again, it is seen that the MSR eigenvalues mix positional informa-
tion with intrinsic response: small, shallow targets and large, deep
objects produce time-dependent eigenvalues of comparable mag-
nitudes.
In Figure 11, we have a large, shallow sample of “cultural” (i.e.,

not-ordnance-related) debris: a plowshare with depth of only 7 cm.
The eigenvalues are quite large, as expected, but decay very fast in
time, indicating that this is not a TOI. The final two figures corre-
spond to multitarget scenarios. In Figure 12a, we have the extracted
eigenvalues corresponding to a set of fragments of a 155-mm muni-
tion buried at a depth of 50 cm. Two sources suffice to describe the

Figure 10. (a) MSR eigenvalues for Camp Butner Cell 58, which
contained two explosion byproducts, a fuze and a shrapnel frag-
ment, at a depth of 16 cm. (b) MSR eigenvalues for Camp Butner
Cell 1728, which contained another fuze (buried 28 cm below
ground).

Figure 11. MSR eigenvalues for Camp Butner Cell 14, with a siz-
able plowshare buried at 7 cm.

Figure 12. (a) MSR eigenvalues for Camp Butner Cell 13, contain-
ing fragments of a 155-mm projectile, buried 50 cm below the
ground. (b) MSR eigenvalues for Camp Butner Cell 45, containing
numerous fragments, buried at several depths, of a munition that
exploded.
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objects. Figure 12b depicts the contents and data of a veritable mul-
titarget cell, with several explosion byproducts at a wide assortment
of depths. The resulting eigenvalue map can immediately alert op-
erators that there may be several potentially dangerous targets in-
terred below and warn analysts from the outset that any inversion to
be performed must involve a forward model that assumes many tar-
gets. (Methods to transmit this information could be incorporated
into the sensor, and those cells will always be dug out.)
The results of the Camp Butner blind test were scored indepen-

dently by the Institute for Defense Analyses (Cazares et al., 2011;
SERDP, 2011). We correctly characterized all of the 2291 anoma-
lies, each containing at least one target, for which data were
provided. All of the 171 potentially dangerous targets were identi-
fied as such and also classified by caliber, and our algorithms more-
over discriminated between the two kinds of 37-mm projectiles and
distinguished the 105-mm HEAT rounds from the other 105-mm
shells. We asked for 116 targets to be dug before we were sure that
we had identified all the TOI; in contrast, the best analysis using the
dipole model required 63 extra digs to reach that level, whereas
other procedures needed many more false alarms to be unearthed
and in some cases failed to identify UXO (Cazares et al., 2011).
One of the stated objectives of the Camp Butner test was to “pave
½ : : : � the way for reduced costs and an accelerated timeline to re-
mediate munitions-contaminated sites throughout the nation”
(SERDP, 2010). The success of our procedure gives an idea of
the progress that has been made toward fulfilling this aim.

CONCLUSION

In this paper, we applied a procedure based on joint diagonaliza-
tion that provides a fast and reliable inversion-free estimate of the
number of targets buried under an EMI sensor. The number of tar-
gets can then be input into multitarget inversion procedures, which
work much faster and more reliably when given this information.
The eigenvalue decay curves found by JD have amplitudes that de-
pend on the location and orientation of the targets, but their shapes,
including the appearance of parallel curves for cylindrically sym-
metric targets, are independent of those particulars. We reiterate that
the JD procedure cannot replace inversion, which is still necessary
because the depths at which the targets are buried must be known so
they can be dug out safely; better knowledge of the locations, more-
over, allows better determination of the intrinsic signatures of the
targets and consequently more robust and reliable identification and
classification.
The JD technique has several other potential uses, which we have

started to pursue. It could be used, for example, to remove noise
from data by removing the smaller extracted eigenvalues and their
corresponding eigenvectors. At the other end, removing the larger
eigenvalues and eigenvectors could make it possible to resolve
smaller or deeply buried objects. For these applications, it is critical
to associate each eigenvalue with its eigenvector unambiguously. In
addition, a JD analysis performed in the field can immediately alert
data collectors about the noise level, which can then be adjusted by
having TEMTADS sample signals for a longer time.
Our aim has been to introduce the JD algorithm and its applica-

tion to a particular sensor, the TEMTADS array, whose design
features make the JD implementation particularly transparent.
We have adapted the JD technique to other EMI instruments —
the Geometrics MetalMapper and a 2 × 2 portable version of

TEMTADS — and, in the future, we will present the results
obtained for blind tests carried out with these tools.
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APPENDIX A

SIMPLIFIED MODEL OF THE MSR MATRIX

We consider an idealized version of TEMTADS consisting of a
5 × 5 array of vertical dipoles of unit moment ẑ — corresponding
to a combination of unit current and unit area — each of which at a
given time gate transmits a primary field

Hpr ¼ 1

4πR5
½3ðẑ · RÞR − ẑR2�

¼ 3ZX
4πR5

x̂þ 3ZY
4πR5

ŷþ 3Z2 − R2

4πR5
ẑ; (A-1)

whereR ≡ Xx̂þ Yŷþ Zẑ ¼ r − rt, r is an observation point, and rt
is the location of the transmitter. Each TEMTADS dipole receives
from a buried source a response Hsc whose z-component reads

Hsc
z ¼ 1

4πR5
ð3ðm · RÞR · ẑ −m · ẑR2Þ

¼ 1

4πR5
½3ðẑ · RÞR − ẑR2� · m; (A-2)

where now R ¼ rr − r with rr the location of the receiver. Note that
the expressions in square brackets in equations A-1 and A-2 coin-
cide if and only if the (infinitesimal) transmitters and receivers are
colocated, as is the case with TEMTADS. The moment m induced
in the responding source is given as in equation 4. The MSR matrix
for the transmitter/receiver array is constructed by assembling Nt

samples of equation A-1 for the transmitted field and Nr samples
of the received response A-2, thus forming the Green tensors

Gpr ¼
�
3ZX
4πR5

3ZY
4πR5

3Z2 − R2

4πR5

�
∈ RNt×3; (A-3)

Gsc ¼
�
3ZX
4πR5

3ZY
4πR5

3Z2 − R2

4πR5

�
∈ RNr×3: (A-4)

The measured secondary signal given in equation 1 is

S ¼ GscðUΛUTÞðGprÞT ¼ ðGscUÞΛðGprUÞT; (A-5)

where U and Λ are 3 × 3 matrices.
We can use this simplified model to provide a plausibility argu-

ment for one of our findings: Targets with cylindrical or spherical
symmetry have a pair of eigenvalues whose log-log decay curves
look parallel (i.e., there is a constant ratio between the two). Take
Gpr and Gsc to be identical, as the geometry above allows, and

WB158 Shubitidze et al.

Downloaded 16 Aug 2012 to 129.170.195.144. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



consider a 2 × 2 sensor array such that the Tx/Rx pairs are located at
ri ¼ lð�x̂� ŷÞ, where l ¼ 0.20 cm in the case of TEMTADS.
Suppose the target is a dipole buried at depth z0 below the center
of the array and characterized by the cylindrically symmetric polar-
izability tensor Λ ¼ β diagð1; 1; λÞ. Ordering the Tx/Rx dipoles
clockwise from the top left of the array, we obtain the MSR matrix

S¼ β

�
3z0l
4πR5

�
2

2
64
−1 1 κ
1 1 κ
1 −1 κ

−1 −1 κ

3
75UΛUT

2
64
−1 1 1 −1
1 1 −1 −1
κ κ κ κ

3
75;

(A-6)

where we have introduced the dimensionless parameter

κ ¼ 3z20 − R2

3z0l
¼ 2

3

�
z0
l
−

l
z0

�
; which implies

z0 ¼
l
4
ð3κ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9κ2 þ 16

p
Þ: (A-7)

If the target is a horizontal dipole, the polarizability tensor is
UΛUT ¼ β diagðλ; 1; 1Þ and the MSR matrix A-6 becomes

S¼ β

�
3z0l
4πR5

�
2

×

2
664

ð1þ λÞ þ κ2 ð1− λÞ þ κ2 −ð1þ λÞ þ κ2 −ð1− λÞ þ κ2

ð1− λÞ þ κ2 ð1þ λÞ þ κ2 −ð1− λÞ þ κ2 −ð1þ λÞ þ κ2

−ð1þ λÞ þ κ2 −ð1− λÞ þ κ2 ð1þ λÞ þ κ2 ð1− λÞ þ κ2

−ð1− λÞ þ κ2 −ð1þ λÞ þ κ2 ð1− λÞ þ κ2 ð1þ λÞ þ κ2

3
775:

(A-8)

The eigenvalues of this 4 × 4 matrix are 0, 4, 4κ2, and 4λ. One ei-
genvalue vanishes, confirming that there is only one target. The
nonzero eigenvalues are in general not degenerate, even for highly
symmetric configurations. (The eigenvalues coincide for the special
case z0 ¼ 2l.) On the other hand, there is a constant ratio κ2 be-
tween two of the eigenvalues, allowing extraction of the extrinsic
depth z0 through the definition in equation A-7. (Cylindrical sym-
metry is important here; if Λ ¼ β diagð1; μ; λÞ, the MSR eigenva-
lues become 0, 4κ2, 4μ, and 4λ, with all significant ratios now
time-dependent.) This undertaking quickly becomes nontrivial:
for example, when the target is vertical, the MSR eigenvalues
are 0, 4, 4, and 4λκ2; the intrinsic and extrinsic features are coupled.
The analysis is further complicated if the target is displaced from the
center of the Tx/Rx array or has another orientation, or if the Tx/Rx
array is larger than 2 × 2.

APPENDIX B

ALGORITHM FOR JOINT DIAGONALIZATION

The joint diagonalization algorithm we use (Flury and Gautschi,
1986; Cardoso and Souloumiac, 1996; Belouchrani et al., 1997) is a
generalization of Jacobi’s procedure to find the eigenvalues of a
single matrix. Formally, we solve the optimization problem

min
V

1
2

PNg

q¼1

P
i≠j

ð½VAðtqÞVT �ijÞ2

s:t: VTV ¼ I
; (B-1)

where I is the identity matrix. We accomplish this by making re-
peated Givens-Jacobi similarity transformations designed to gradu-
ally accumulate the “content” of the matrices on their diagonals
until a certain tolerance level is reached. The transformations are
of the form AðtqÞ → A 0ðtqÞ ¼ VrsAðtqÞVT

rs, with the matrix Vrs

being the identity but with the four elements Vrr, Vrs, Vsr, and
Vss replaced by the 2D rotation array

�
cosϕrs sinϕrs

− sinϕrs cosϕrs

�
; tan2ϕrs ¼ frs

nrs þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2rs þ n2rs

p ;

(B-2)

where

nrs ¼
X
q

f½arrðtqÞ − assðtqÞ�2 − ½arsðtqÞ þ asrðtqÞ�2g;

(B-3)

frs ¼ 2
X
q

½arrðtqÞ − assðtqÞ�½arsðtqÞ þ asrðtqÞ�: (B-4)

The indices are swept systematically and the procedure is re-
peated until convergence is reached. The computational burden
is equivalent to that of diagonalizing the matrices one by one.
The resulting eigenvalues and eigenvectors are all real because
all the MSR matrices are symmetric.
We have also solved the nonlinear constrained optimization pro-

blem B-1 directly using sequential quadratic programming as im-
plemented in the function fmincon of the Matlab Optimization
Toolbox (The MathWorks, 2006). This procedure unsurprisingly
takes a longer time to run than the Givens-Jacobi algorithm
sketched above. The two procedures gave equivalent results in
all cases we tried; Figure 8c shows an example.
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